

Communication

3-Center-4-Electron Bonding in [(silox)MoNBu](D-Hg) Controls Reactivity while Frontier Orbitals Permit a Dimolybdenum D-Bond Energy Estimate

Devon C. Rosenfeld, Peter T. Wolczanski, Khaldoon A. Barakat, Corneliu Buda, and Thomas R. Cundari

J. Am. Chem. Soc., **2005**, 127 (23), 8262-8263• DOI: 10.1021/ja051070e • Publication Date (Web): 18 May 2005 Downloaded from http://pubs.acs.org on March **25**, **2009**

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 3 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Published on Web 05/18/2005

3-Center-4-Electron Bonding in $[(silox)_2Mo=N^tBu]_2(\mu-Hg)$ Controls Reactivity while Frontier Orbitals Permit a Dimolybdenum π -Bond Energy Estimate

Devon C. Rosenfeld,[†] Peter T. Wolczanski,^{*,†} Khaldoon A. Barakat,[‡] Corneliu Buda,[‡] and Thomas R. Cundari^{*,‡}

Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, and Department of Chemistry, University of North Texas, Box 305070, Denton, Texas 76203

Received February 18, 2005; E-mail: ptw2@cornell.edu; tomc@unt.edu

In a continuing investigation into the reactivity of low-coordinate transition metal complexes,¹⁻⁴ d² group 6 (silox)₂M=N^tBu (M = Cr, Mo (1), W (2))⁵ species were sought as lower-symmetry analogues to (silox)₃M (M = V, Nb-L (L = 4-picoline, PMe₃), Ta; silox = 'Bu₃SiO). The large singlet-triplet gap accorded (silox)₃Ta renders it stable, whereas the niobium congener has not been isolated. Likewise, while **2** has been crystallographically characterized,⁵ the second row analogue, (silox)₂Mo=N'Bu (1), proved to be elusive, and [(silox)₂Mo=N'Bu]₂(μ -Hg) (1₂-Hg) was prepared instead. Its stability, combined with a sensitivity to nucleophilic attack, is rationalized by 3c4e bonding,⁶ and its frontier orbitals can be analyzed to estimate a Mo₂ π -bond energy.⁷⁻⁹

Treatment of (dme)Cl₂Mo(=N'Bu)₂¹⁰ with 2 equiv of 'Bu₃SiOH and 1 equiv of HCl in benzene afforded [H₃N'Bu]Cl and (silox)₂Cl₂-Mo=N'Bu (**3**, 82%). Whereas (silox)₂W=N'Bu (**2**) was isolated from reduction of the analogous tungsten complex,⁵ various reducing agents failed to elicit "(silox)₂Mo=N'Bu (**1**)". Instead, Na/Hg reduction of **3** yielded olive-green, paramagnetic [(silox)₂Mo= N'Bu]₂(μ -Hg) (**1**₂-Hg, 56%),¹¹ whose C_{2h} structure is composed of distorted trigonal MoO₂N cores that lean slightly toward the linear μ -Hg bridge from the imido position (Figure 1).

High level quantum calculations conducted on the model [(HO)₂Mo=NH]₂Hg (1'₂-Hg)^{12,13} reveal a 3c4e Mo₂Hg interaction (Figure 2),⁶ consistent with the modest electronegativity difference between Hg ($\chi_{Hg} = 2.00$) and Mo ($\chi_{Mo} = 2.16$). The 3c4e situation is unusual because the *symmetric* combination of d_z^2 orbitals derived from (HO)₂Mo=NH (1'))¹⁴ interacts with the Hg 6s orbital to generate the bonding MO (1ag at -8.22 eV; MoN π^b -contributions are also evident), while the antisymmetric combination (1b_u at -5.74 eV) is essentially "non-bonding" because the Hg 6p_z orbital is too energetically high to interact.

The frontier orbitals of 1'₂-Hg are the π (1a_u, -2.70 eV) and π^* (1b_g, -2.51 eV) combinations of the d_{yz} orbitals from 1'; the former manifests essentially no contribution from Hg 6p_y, and the Mo–Hg rotational barrier is negligible. Note that d_{yz} is the HOMO of 1', and d_{xz} is ~0.8 eV higher as it is a π^* orbital of the Mo=N interaction. The small distortion of the O–Mo–O angles (<120°) in 1', 1'-Hg, and 1₂-Hg lowers the MoO π^* character of d_{yz} at the expense of d_{xz}.^{13,14} Magnetic studies (SQUID) corroborate the proximity of the 1a_u and 1b_g orbitals. At 4 K the ground-state approaches ¹A_g, but at 300 K, 1₂-Hg exhibits a μ_{eff} of 1.7 μ_B due to TIP (1270 × 10⁻⁶ emu) resulting from mixing with the ³B_u excited state (i.e., $\Delta E({}^{1}A_{g} \rightarrow {}^{3}B_{u}) \approx 550$ cm⁻¹ (estimated)).

Calculations on the scission of $[(HO)_2Mo=NH]_2Hg$ ($1'_2$ -Hg) to $(HO)_2Mo=NH$ (1') and $[(HO)_2Mo=NH]Hg$ (1'-Hg) place the dissociation enthalpy at 22.4 kcal/mol,^{12,15} yet 1_2 -Hg is indefinitely stable in benzene solution at 23 °C; at 140 °C, its degradation rate

Figure 1. Molecular view of [(silox)₂Mo=N'Bu]₂Hg (1₂-Hg). Selected bond distances (Å) and angles (deg): Mo-Hg, 2.6810(5); Mo-N, 1.718(3); Mo-O, 1.894(2), 1.905(2); O-Mo-O, 113.60(9); O-Mo-N, 119.91(11), 121.33(11); N-Mo-Hg, 84.51(8); O-Mo-Hg, 103.37(7), 105.42(7).

Figure 2. 3c4e bonding in $[(silox)_2Mo=N^tBu]_2Hg$ (1₂-Hg); four states derived from its frontier orbitals.

is roughly $1 \times 10^{-4} \text{ s}^{-1}$ ($\Delta G^{\ddagger} \approx 32$ kcal/mol). Dissociation of $\mathbf{1}_2$ -Hg to $\mathbf{1}$ and $\mathbf{1}$ -Hg requires a surface crossing, since each product is calculated to be a triplet. While several studies have shown that intersystem crossings are adiabatic when heavy elements are involved, ¹⁶⁻¹⁸ the orbital symmetry of $\mathbf{1}_2$ -Hg ($\sigma^2 \sigma^2 \pi^2$) is different

[†] Cornell University. [‡] University of North Texas.

from the products of the quintet surface $(\sigma^1 \pi^1 \text{ for } \mathbf{1}, \sigma^2 \pi^1 \pi^1 \text{ for } \mathbf{1})^{-1}$ As a consequence, the calculated relative ΔG° of the crossing point $(\mathbf{1'}_2\text{-Hg} \rightarrow \mathbf{1'} + \mathbf{1'}\text{-Hg})$ is quite high (~28 kcal/mol) and within reason of the observed ΔG^{\ddagger} of degradation.

The empty, low-lying (-2.19 eV) symmetric antibonding component $(2a_g)$ of the 3c4e manifold renders 1_2 -Hg susceptible to nucleophilic attack and Mo-Hg bond cleavage. Treatment of $[(silox)_2Mo=N^tBu]_2(\mu-Hg)$ (1₂-Hg) with excess PMe₃ or py afforded maroon $(silox)_2(^tBuN)MoPMe_3$ (1-PMe₃, S = 0) and dark blue-purple $(silox)_2(^tBuN)Mopy_2$ (1-py₂, S = 0) within 5 min. Poorer nucleophiles were ineffective at cleavage. With 4.8 equiv of 2-butyne, only 59% of (silox)₂(^tBuN)Mo(MeC=CMe) (1-C₂-Me₂ S = 0) formed after 27 d at 25 °C, and 45 h at 70 °C was required for complete conversion. With ethylene (5 equiv), 23% $(silox)_2(^tBuN)Mo(C_2H_4)$ (1-C₂H₄, S = 0) formed after 30 h at 23 °C; after 30 h at 63 °C the reaction was complete. Likewise, 2.2 equiv of N₂O generated only 10% (silox)₂(^tBuN)MoO (**1=**O) after 16 h at 25 °C; 20 h at 60 °C effected completion. 2-Butyne and ethylene displace PMe₃ from 1-PMe₃ to afford 1-C₂Me₂ and $1-C_2H_4$, and hence the rates of 1_2 -Hg cleavage do not reflect the thermodynamics.

As Figure 2 illustrates, the $1a_u$ and $1b_g$ orbitals of 1_2 -Hg have no Hg component and can be considered dimolybdenum π - and π^* -orbitals that have been "stretched" beyond a meaningful overlap distance. As others have used the relative rotation of an L₂X₂Mo fragment in quadruply bonded (L-L)₂X₄Mo₂ systems to diminish or eliminate d-overlap,^{19,20} the "stretched" π -interaction in **1**₂-Hg can be considered similarly. The energy difference between the ${}^{1}B_{u}$ and ${}^{3}B_{u}$ states derived from the $(1a_{u})^{1}(1b_{g})^{1}$ configuration is 2*K*, where *K* is the exchange energy and $\Delta W = E(1b_g) - E(1a_u)$, as in the paradigm provided by Cotton and Nocera for any twoelectron bond.⁶ The lowest energy band in the UV-vis spectrum of $\mathbf{1}_2$ -Hg is a weak absorption ($\epsilon \approx 160 \text{ M}^{-1} \text{ cm}^{-1}$) at 1000 nm that is assigned to the x,y-allowed ${}^{1}A_{g} \rightarrow {}^{1}B_{u}$ transition (K = 4700 cm⁻¹, $\Delta W = 2450$ cm⁻¹); intensity stealing from an O(p π) \rightarrow Mo(d_{vz}- π) LMCT band may aid its observation.²¹ An assignment of the related $\pi^2 \rightarrow \pi^1 \pi^{*1}$ band (528 nm, $e \approx 1200 \text{ M}^{-1} \text{ cm}^{-1}$) in Schrock's [Mo(NAr)(CH₂^tBu)(OC₆F₅)]₂ (4)²² permits a crude assessment of its dimolybdenum π -bond energy as $\{E(\pi^2 \rightarrow \pi^1 \pi^{*1})\}$ in 4) – $E({}^{1}A_{g} \rightarrow {}^{1}B_{u} \text{ in } \mathbf{1}_{2}\text{-Hg})$ + $E({}^{1}A_{g} \rightarrow {}^{3}B_{u} \text{ in } \mathbf{1}_{2}\text{-Hg})$ = 9540 cm⁻¹ (27 kcal/mol).⁶ This rare spectroscopic estimate of the π -bond strength^{23,24} rests on the premise that characteristic energies in these compounds are similar, the contribution from Hg $6p_z$ to the π^{b} (1a_u) orbital in 1₂-Hg is negligible, and configuration interaction contributes minimally to the ${}^{1}B_{\mu}$ (1₂-Hg) and $\pi^{1}\pi^{*1}$ states (4).

Calculations suggest that the model is a fundamental approximation for the dimolybdenum π -bond. Using multireference perturbation theory (MPT)^{12,25} on the $\mathbf{1'}_2$ -Hg model, the $\Delta E({}^{1}\mathrm{A_g} \rightarrow {}^{1}\mathrm{B_u})$ transition is calculated to be at ~890 nm with $K = 4740 \text{ cm}^{-1}$, $\Delta W = 4425 \text{ cm}^{-1}$, and $D(\pi(\mathrm{Mo}_2)) = 27 \text{ kcal/mol}$. Given the difficulty of calculating excited states, the values are within reason, but more importantly, the calculations implicate substantial mixing in ${}^{1}\mathrm{B_u}$ (69% arising from higher energy orbitals outside the two orbital, two-electron Coulson and Fischer⁸ space, i.e., $(1a_u)^2(1b_g)^0$). In contrast, the ${}^{1}\mathrm{A_g}$ and ${}^{3}\mathrm{B_u}$ states are ~90% "pure". Complementary structural, reactivity, and electronic studies on $\mathbf{1}_2$ -Hg and various derivatives are continuing.

Acknowledgment. We dedicate this article to the memory of Vincent M. Miskowski, an aficionado of the multiple bond. We thank the National Science Foundation (CHE-0415506 (P.T.W.) and CHE-0309811 (T.R.C.)), Prof. Francis J. DiSalvo, Prof. Karsten

Meyer (UCSD, magnetic data), and Prof. Richard R. Schrock (MIT, UV-vis spectrum of **4**).

Supporting Information Available: Spectral, magnetic and analytical data, CIF file for 1_2 -Hg, experimental procedures, and computational details. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- Veige, A. S.; Slaughter, L. M.; Lobkovsky, E. B.; Wolczanski, P. T.; Matsunaga, N.; Decker, S. A.; Cundari, T. R. *Inorg. Chem.* 2003, 42, 6204–6224.
- (2) Neithamer, D. R.; LaPointe, R. E.; Wheeler, R. A.; Richeson, D. S.; Van Duyne, G. D.; Wolczanski, P. T. J. Am. Chem. Soc. 1989, 111, 9056– 9072.
- (3) Kleckley, T. S.; Bennett, J. L.; Wolczanski, P. T.; Lobkovsky, E. B. J. Am. Chem. Soc. 1997, 119, 247–248.
- (4) Bonanno, J. B.; Wolczanski, P. T.; Lobkovsky, E. B. J. Am. Chem. Soc. 1994, 116, 11159–11160.
- (5) Eppley, D. F.; Wolczanski, P. T.; Van Duyne, G. D. Angew. Chem., Int. Ed. Engl. 1991, 30, 584–585.
- (6) Chemistry of Hypervalent Compounds; Akiba, K., Ed; Wiley-VCH: New York, 1999.
- (7) Cotton, F. A.; Nocera, D. G. Acc. Chem. Res. **2000**, 33, 483–490. $E(^{1}A_{g}) = 0$, $E(^{3}B_{u}) = [\Delta W^{2} + K^{2}]^{1/2} K$, $E(^{1}B_{u}) = [\Delta W^{2} + K^{2}]^{1/2} + K$, $E(^{1}A_{g}) = 2[\Delta W^{2} + K^{2}]^{1/2}$.
- (8) Hansen, A. E.; Ballhausen, C. J. Trans. Faraday Soc. 1965, 61, 631-639.
- (9) Coulson, C. A.; Fischer, I. Philos. Mag. 1949, 40, 386-393.
- (10) Fox, H. H.; Yap, K. B.; Robbins, J.; Cai, S.; Schrock, R. R. Inorg. Chem. 1992, 31, 2287–2289.
- (11) For related structures, see: (a) Green, M. L. H.; Konidaris, P. C.; Mountford, P. J. Chem. Soc., Dalton Trans. 1994, 2851–2859.
 (b) Williams, D. S.; Schofield, M. H.; Schrock, R. R.; Davis, W. M.; Anhaus, J. T. J. Am. Chem. Soc. 1991, 113, 5480–5481.
- (12) Geometry optimizations: B3PW91 hybrid density functional; Stevens effective core potential scheme. Stevens valence basis sets (CEP-31G) included a d-polarization function (main group). DFT calculations used Gaussian 03 and open shell species were modeled with an unrestricted Kohn-Sham formalism.
- (13) **I**'₂-Hg: d(MoHg) = 2.75 Å; d(MoO) = 1.92, 1.93 Å; d(MoN) = 1.73 Å; ∠O-Mo-O = 115°; ∠O-Mo-N = 118°, 121°; ∠Hg-Mo-O = 96°, 107°; ∠Hg-Mo-N = 90°. **I**': d(MoO) = 1.93 Å; d(MoN) = 1.74 Å; ∠O-Mo-O = 117°; ∠O-Mo-N = 120°, 123°. **I**'-Hg: d(MoHg) = 3.08 Å; d(MoO) = 1.93 Å; d(MoN) = 1.74 Å; ∠O-Mo-O = 117°; ∠O-Mo-N = 119°, 122°; ∠Hg-Mo-O = 92°, 93°; ∠Hg-Mo-N = 97°.
- (14) **1'** d-orbital energies: nb, $(d_{z^2})^1$, -2.85 eV; MoO π^* , $(d_{yz})^1$, -2.54 eV; MoN π^* , d_{xz} , -1.71; MoN σ^* and MoO π^* , $d_{x^2-y^2}$, -0.64; MoO σ^* and MoN π^* , d_{xy} , 0.19.
- (15) $E({}^{3}[1'_{2}-Hg]) \approx E({}^{1}[1_{2}-Hg]): {}^{1}Hg + 2 {}^{3}[1'] \rightarrow {}^{3}[1'_{2}-Hg], \Delta H = -25.6 \text{ kcal/mol}; {}^{1}Hg + {}^{3}[1'] \rightarrow {}^{3}[1'_{2}-Hg], \Delta H = -3.1 \text{ kcal/mol}; {}^{3}[1'_{2}-Hg] + {}^{3}[1'] \rightarrow {}^{3}[1'_{2}-Hg], \Delta H = -22.4 \text{ kcal/mol}.$
- (16) (a) Poli, R. J. Organomet. Chem. 2004, 689, 4291–4304. (b) Poli, R. Chem. Rev. 1996, 96, 2135–2204. (c) Poli, R. Acc. Chem. Res. 1997, 30, 494–501.
- (17) (a) Harvey, J. N.; Poli, R.; Smith, K. M. Coord. Chem. Rev. 2003, 238, 347–361. (b) Poli, R.; Harvey, J. N. Chem. Soc. Rev. 2003, 32, 1–8.
- (18) (a) Harvey, J. N. In Spin Forbidden Reactions in Transition Metal Chemistry; Cundari, T. R., Ed.; Marcel Dekker: Basel, 2001. (b) Carreon-Macedo, J. L.; Harvey, J. N. J. Am. Chem. Soc. 2004, 126, 5789–5797 and references therein.
- (19) Cotton, F. A.; Eglin, J. L.; Hong, B.; James, C. A. Inorg. Chem. 1993, 32, 2104–2106.
- (20) Hopkins, M. D.; Zietlow, T. C.; Miskowski, V. M.; Gray, H. B. J. Am. Chem. Soc. 1985, 107, 510–512.
- (21) Hopkins, M. D.; Gray, H. B.; Miskowski, V. M. Polyhedron 1987, 6, 705-714.
- (22) Lopez, L. P. H.; Schrock, R. R. J. Am. Chem. Soc. 2004, 31, 9526– 9527.
- (23) For the complete energetics of a quadruple bonded system, see: Engebretson, D. S.; Graj, E. M.; Leroi, G. E.; Nocera, D. G. J. Am. Chem. Soc. 1999, 121, 868–869.
- (24) For an approach to a rotated π-bond, see: Piotrowiak, P.; Strati, G.; Smirnov, S. N.; Warman, J. M.; Schuddeboom, W. J. Am. Chem. Soc. 1996, 118, 8981–8982.
- (25) MPT calculations (Nakano, H. J. Chem. Phys. **1993**, 99, 7983–7992) employed GAMESS (Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. J.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. J. Comput. Chem. **1993**, *14*, 1347–1363).

JA051070E