
Subscriber access provided by American Chemical Society

Journal of the American Chemical Society is published by the American Chemical
Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Communication

3-Center-4-Electron Bonding in [(silox)
2

MoN
t

Bu]
2

(�-Hg) Controls Reactivity
while Frontier Orbitals Permit a Dimolybdenum �-Bond Energy Estimate

Devon C. Rosenfeld, Peter T. Wolczanski, Khaldoon A. Barakat, Corneliu Buda, and Thomas R. Cundari
J. Am. Chem. Soc., 2005, 127 (23), 8262-8263• DOI: 10.1021/ja051070e • Publication Date (Web): 18 May 2005

Downloaded from http://pubs.acs.org on March 25, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

• Supporting Information
• Links to the 3 articles that cite this article, as of the time of this article download
• Access to high resolution figures
• Links to articles and content related to this article
• Copyright permission to reproduce figures and/or text from this article

http://pubs.acs.org/doi/full/10.1021/ja051070e


3-Center-4-Electron Bonding in [(silox) 2ModNtBu] 2(µ-Hg) Controls Reactivity
while Frontier Orbitals Permit a Dimolybdenum π-Bond Energy Estimate

Devon C. Rosenfeld,† Peter T. Wolczanski,*,† Khaldoon A. Barakat,‡ Corneliu Buda,‡ and
Thomas R. Cundari*,‡

Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell UniVersity, Ithaca, New York 14853, and
Department of Chemistry, UniVersity of North Texas, Box 305070, Denton, Texas 76203

Received February 18, 2005; E-mail: ptw2@cornell.edu; tomc@unt.edu

In a continuing investigation into the reactivity of low-coordinate
transition metal complexes,1-4 d2 group 6 (silox)2MdNtBu
(M ) Cr, Mo (1), W (2))5 species were sought as lower-symmetry
analogues to (silox)3M (M ) V, Nb-L (L ) 4-picoline, PMe3), Ta;
silox ) tBu3SiO). The large singlet-triplet gap accorded (silox)3Ta
renders it stable, whereas the niobium congener has not been
isolated. Likewise, while2 has been crystallographically character-
ized,5 the second row analogue, (silox)2ModNtBu (1), proved to
be elusive, and [(silox)2ModNtBu]2(µ-Hg) (12-Hg) was prepared
instead. Its stability, combined with a sensitivity to nucleophilic
attack, is rationalized by 3c4e bonding,6 and its frontier orbitals
can be analyzed to estimate a Mo2 π-bond energy.7-9

Treatment of (dme)Cl2Mo(dNtBu)210 with 2 equiv oftBu3SiOH
and 1 equiv of HCl in benzene afforded [H3NtBu]Cl and (silox)2Cl2-
ModNtBu (3, 82%). Whereas (silox)2WdNtBu (2) was isolated
from reduction of the analogous tungsten complex,5 various
reducing agents failed to elicit “(silox)2ModNtBu (1)”. Instead,
Na/Hg reduction of3 yielded olive-green, paramagnetic [(silox)2Mod
NtBu]2(µ-Hg) (12-Hg, 56%),11 whoseC2h structure is composed of
distorted trigonal MoO2N cores that lean slightly toward the linear
µ-Hg bridge from the imido position (Figure 1).

High level quantum calculations conducted on the model
[(HO)2ModNH]2Hg (1′2-Hg)12,13reveal a 3c4e Mo2Hg interaction
(Figure 2),6 consistent with the modest electronegativity difference
between Hg (øHg ) 2.00) and Mo (øMo ) 2.16). The 3c4e situation
is unusual because thesymmetriccombination of dz2 orbitals derived
from (HO)2ModNH (1′))14 interacts with the Hg 6s orbital to
generate the bonding MO (1ag at -8.22 eV; MoNπb-contributions
are also evident), while the antisymmetric combination (1bu at
-5.74 eV) is essentially “non-bonding” because the Hg 6pz orbital
is too energetically high to interact.

The frontier orbitals of1′2-Hg are theπ (1au, -2.70 eV) and
π* (1bg, -2.51 eV) combinations of the dyz orbitals from1′; the
former manifests essentially no contribution from Hg 6py, and the
Mo-Hg rotational barrier is negligible. Note that dyz is the HOMO
of 1′, and dxz is ∼0.8 eV higher as it is aπ* orbital of the ModN
interaction. The small distortion of the O-Mo-O angles (<120°)
in 1′, 1′-Hg, and12-Hg lowers the MoOπ* character of dyz at the
expense of dxz.13,14 Magnetic studies (SQUID) corroborate the
proximity of the 1au and 1bg orbitals. At 4 K the ground-state
approaches1Ag, but at 300 K,12-Hg exhibits aµeff of 1.7 µB due
to TIP (1270× 10-6 emu) resulting from mixing with the3Bu

excited state (i.e.,∆E(1Ag f 3Bu) ≈ 550 cm-1 (estimated)).
Calculations on the scission of [(HO)2ModNH]2Hg (1′2-Hg) to

(HO)2ModNH (1′) and [(HO)2ModNH]Hg (1′-Hg) place the
dissociation enthalpy at 22.4 kcal/mol,12,15yet12-Hg is indefinitely
stable in benzene solution at 23°C; at 140°C, its degradation rate

is roughly 1× 10-4 s-1 (∆Gq ≈ 32 kcal/mol). Dissociation of
12-Hg to1 and1-Hg requires a surface crossing, since each product
is calculated to be a triplet. While several studies have shown that
intersystem crossings are adiabatic when heavy elements are
involved,16-18 the orbital symmetry of12-Hg (σ2σ2π2) is different
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Figure 1. Molecular view of [(silox)2ModNtBu]2Hg (12-Hg). Selected bond
distances (Å) and angles (deg): Mo-Hg, 2.6810(5); Mo-N, 1.718(3);
Mo-O, 1.894(2), 1.905(2); O-Mo-O, 113.60(9); O-Mo-N, 119.91(11),
121.33(11); N-Mo-Hg, 84.51(8); O-Mo-Hg, 103.37(7), 105.42(7).

Figure 2. 3c4e bonding in [(silox)2ModNtBu]2Hg (12-Hg); four states
derived from its frontier orbitals.

Published on Web 05/18/2005

8262 9 J. AM. CHEM. SOC. 2005 , 127, 8262-8263 10.1021/ja051070e CCC: $30.25 © 2005 American Chemical Society



from the products of the quintet surface (σ1π1 for 1, σ2π1π1 for
1-Hg).1 As a consequence, the calculated relative∆G° of the
crossing point (1′2-Hg f 1′ + 1′-Hg) is quite high (∼28 kcal/mol)
and within reason of the observed∆Gq of degradation.

The empty, low-lying (-2.19 eV) symmetric antibonding
component (2ag) of the 3c4e manifold renders12-Hg susceptible
to nucleophilic attack and Mo-Hg bond cleavage. Treatment of
[(silox)2ModNtBu]2(µ-Hg) (12-Hg) with excess PMe3 or py af-
forded maroon (silox)2(tBuN)MoPMe3 (1-PMe3, S ) 0) and dark
blue-purple (silox)2(tBuN)Mopy2 (1-py2, S ) 0) within 5 min.
Poorer nucleophiles were ineffective at cleavage. With 4.8 equiv
of 2-butyne, only 59% of (silox)2(tBuN)Mo(MeCtCMe) (1-C2-
Me2 S ) 0) formed after 27 d at 25°C, and 45 h at 70°C was
required for complete conversion. With ethylene (5 equiv), 23%
(silox)2(tBuN)Mo(C2H4) (1-C2H4, S ) 0) formed after 30 h at
23 °C; after 30 h at 63°C the reaction was complete. Likewise,
2.2 equiv of N2O generated only 10% (silox)2(tBuN)MoO (1dO)
after 16 h at 25°C; 20 h at 60°C effected completion. 2-Butyne
and ethylene displace PMe3 from 1-PMe3 to afford 1-C2Me2 and
1-C2H4, and hence the rates of12-Hg cleavage donot reflect the
thermodynamics.

As Figure 2 illustrates, the 1au and 1bg orbitals of12-Hg have
no Hg component and can be considered dimolybdenumπ- and
π*-orbitals that have been “stretched” beyond a meaningful overlap
distance. As others have used the relative rotation of an L2X2Mo
fragment in quadruply bonded (L-L)2X4Mo2 systems to diminish
or eliminate d-overlap,19,20 the “stretched”π-interaction in12-Hg
can be considered similarly. The energy difference between the
1Bu and 3Bu states derived from the (1au)1(1bg)1 configuration is
2K, whereK is the exchange energy and∆W ) E(1bg) - E(1au),
as in the paradigm provided by Cotton and Nocera forany two-
electron bond.6 The lowest energy band in the UV-vis spectrum
of 12-Hg is a weak absorption (ε ≈ 160 M-1 cm-1) at 1000 nm
that is assigned to thex,y-allowed 1Ag f 1Bu transition (K )
4700 cm-1, ∆W ) 2450 cm-1); intensity stealing from an O(pπ)
f Mo(dyz-π) LMCT band may aid its observation.21 An assignment
of the relatedπ2 f π1π*1 band (528 nm,e ≈ 1200 M-1 cm-1) in
Schrock’s [Mo(NAr)(CH2

tBu)(OC6F5)]2 (4)22 permits a crude as-
sessment of its dimolybdenumπ-bond energy as{E(π2 f π1π*1

in 4) - E(1Ag f 1Bu in 12-Hg)} + E(1Ag f 3Bu in 12-Hg) )
9540 cm-1 (27 kcal/mol).6 This rare spectroscopic estimate of the
π-bond strength23,24rests on the premise that characteristic energies
in these compounds are similar, the contribution from Hg 6pz to
the πb (1au) orbital in 12-Hg is negligible, and configuration
interaction contributes minimally to the1Bu (12-Hg) andπ1π*1 states
(4).

Calculations suggest that the model is a fundamental approxima-
tion for the dimolybdenumπ-bond. Using multireference perturba-
tion theory (MPT)12,25 on the1′2-Hg model, the∆E(1Ag f 1Bu)
transition is calculated to be at∼890 nm withK ) 4740 cm-1,
∆W ) 4425 cm-1, and D(π(Mo2)) ) 27 kcal/mol. Given the
difficulty of calculating excited states, the values are within reason,
but more importantly, the calculations implicate substantial mixing
in 1Bu (69% arising from higher energy orbitals outside the two-
orbital, two-electron Coulson and Fischer8 space, i.e., (1au)2(1bg)0).
In contrast, the1Ag and3Bu states are∼90% “pure”. Complementary
structural, reactivity, and electronic studies on12-Hg and various
derivatives are continuing.
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